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Diffusive behavior of a thin particle layer in fluid by hydrodynamic interaction
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The hydrodynamic effect on a thin particle layer, which moves relative to fluid by an external force, is
investigated theoretically and numerically. Because of the presence of layer ends, the arrangement of particles
in the layer is anisotropic and the drag force acting on them varies according to the position. The resulting
relative motion of particles brings about the spreading of the layer. We have studied such a diffusive behavior
of particle layers, which have various internal arrangements. We have assumed a non-Brownian system in
which the particles move relatively owing to only the variance of hydrodynamic force. The hydrodynamic
force on each particle was calculated by Stokesian dynamics approach. The results show that the relative
motion of particles is greatly influenced by the internal arrangement of the particle layer. In consequence, the
overall diffusive motion of particle layer varies with the arrangement even if the particle concentration is

similar. It is in contrast to the gradient diffusion of Brownian particles.
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I. INTRODUCTION

The relative motion of solid particles to surrounding fluid
has been important since early times in various engineering
processes such as mixing, separation, and dispersion of par-
ticulate materials in fluid. Besides, two- or three-dimensional
crystalline arrays of colloidal particles have been made for
new optical and electronic devices in recent years, and the
motion of particles relative to fluid often plays a significant
role in the fabrication of highly ordered crystalline arrays [1].

It is known that the motion of particles in fluid by an
external force, such as gravity force, is influenced by the
hydrodynamic interaction with their surrounding particles.
The hydrodynamic interaction is the momentum interchange
of particles due to the disturbed fluid flow by each particle.
For example, the mean settling velocity of particles in sus-
pension depends on the particle concentration and it de-
creases with the increase in the concentration owing to their
hydrodynamic interactions [2].

Not only does the hydrodynamic interaction affect the
whole motion of suspension but also it causes the relative
motion between suspended particles. The resultant fluctuat-
ing motion brings about various hydrodynamic effects such
as the clustering and the diffusion of particles [3]. In general,
the hydrodynamic interactions between particles are long-
ranged under conditions of low particle Reynolds number,
since the disturbed flow by the motion of individual particles
decays inversely proportional to the distance from the par-
ticle. Consequently, these effects are more influential with
the motion of finer particles in more viscous fluid.

The diffusion due to the hydrodynamic interaction of par-
ticle has been studied by many researchers and it has been
called hydrodynamic diffusion or hydrodynamic dispersion
[3-9]. In the system which the diffusion lengthscale is much
greater than the size of suspended particles, which is often
observed in the sedimentation process of fine particle, the
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diffusive property of suspended particles has been treated
analogous to that of molecular diffusion. Concerning this
system, the numerical simulation and the direct measurement
of the fluctuating motion of particles in fluid have suggested
that the diffusion coefficient varies with the concentration
and it has a strong dependency on the orientation.

On the other hand, in the coating process of particle or the
fabrication of two-dimensional particle arrays, the length-
scale of hydrodynamic diffusion is the same order of particle
size. In such anisotropic systems, it is difficult to consider
the diffusion properties from macroscopic viewpoint like
molecular diffusion because the local averaged variables,
such as the concentration and the fluctuation velocity, cannot
be defined properly. Therefore, it has to be considered as
individual motions of constituent particles. The analyses on
the diffusion property by taking such an approach have been
rarely seen in previous researches.

The purpose of this study is to investigate the hydrody-
namic effect on particles in the anisotropic system. As shown
in Fig. 1, we consider a thin particle layer, which moves
relative to a stationary fluid by an external force. We have
assumed the particle in the layer is small and moves slowly,
i.e., both fluid and particle inertias can be neglected. In such
a system, the hydrodynamic interaction between particles is
determined only by the relative position of particles [10].
Therefore, the drag force exerted on particles near the layer
end is different from that on inside particles due to aniso-
tropic arrangements of their surrounding particles. The dif-
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FIG. 1. Schematic diagram of relative motion of a particle layer
to stationary fluid by an external force.
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ference of drag force brings about the relative motion of
particles in the layer and, consequently, the thickness of the
layer may change. From macroscopic viewpoint, it can be
interpreted as the diffusion caused by the end effect of hy-
drodynamic interaction.

We have particularly focused on the relative motion of
particles and have investigated such a diffusive process at the
level of individual particle theoretically and numerically. The
outlines of this paper are as follows. In Sec. II, we begin with
an explanation about the calculation method. In Sec. III, the
following are discussed: (A) drag force exerted on each of
spatially fixed particles consisting of the layer in a fluid; (B)
dynamics of regularly arranged particle layer; and (C) dy-
namics of randomly arranged particle layer. In Sec. IIT A, we
exhibit our results with those by previous studies and show
interesting features concerning the dependency of the drag
force on particle arrangement inside the layer. In Secs. III B
and III C, we show the remarkable changes in the diffusive
behavior of particle layer according to the internal arrange-
ment and discuss how the presence of layer ends affects the
diffusive properties of particles. In Sec. IV, we conclude our
study.

II. ASSUMPTION AND FORMULATION

The motion of fine particles which form a thin layer in a
stationary fluid is considered. The constant external force is
applied to each particle. On the assumption that the particle
is adequately small and it moves slowly, the inertias of both
particle and fluid are neglected. We consider a non-Brownian
system in which the particles move relatively only due to the
difference in the hydrodynamic force acting on them.

Figure 1 shows a schematic diagram of the relative mo-
tion of particle layer to fluid. The thickness of the particle
layer is finite in the direction of external force, while it is
infinite in the other directions. The motion of each particle is
calculated by Stokesian dynamics approach. The mobility
matrix of particles is based on the Rotne-Prager tensor [11],
which is based on the multipole expansion of Oseen tensor
and Faxén’s law [10]. The external force acting on each par-
ticle is related to the particle velocity by the mobility matrix
as follows:

N
6mualf =Ff+ 2, M;x*-xP)F?, (1)
p=1

(B#a)

where a is the particle radius, u is the viscosity, x®#, U%P,
and F*# are the position, the velocity, and the external force
of particles a, B, respectively. The mobility matrix M;(r) is

given as follows:
301 s
M,-j(r)=<—a+—a3V2)<V25ij— )r, (2)
4 4 8ri 19rj

where r=|r|.

In this study, the periodic boundary is applied in two di-
rections (x and y). Ewald summation technique is applied to
the mobility matrix in these directions in order to calculate
properly the hydrodynamic effect of the further particles. If
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we set the length of the calculation domain (the lattice width
of Ewald sum) in x and y directions to be L, and L,, respec-
tively, the lattice vector is defined by r,=(n,L;,n,L,,0),
where n;,n,=0,*1,*2,.... The relationship between the
external force and the particle velocity is given as follows
[12,13]:

N
1
6mpmal®=F*+ >, > MS})(x“—xB+r,/)Ff+—
ny,ny  B=1 L1L2
(B#a)

N
X > > expl— ik (x® = xP) + ko (y* = yA) T}
my,my B=1
(k#0)

XMk ko2t = P)FF = MP(r = 0)FF, (3)

where k1=27Tm1/L1 and k2=277m2/L2 (ml,mzi
0,*1,=*=2,...). The mobility matrices in real and reciprocal
spaces ME})(r), Mg)(r), and Mﬁf)(kl,kz;z) are given as fol-
lows:

)[r erfe(ér)],
(4)

3 1
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J 4 4 ﬁri&}’j

M2 () = (§a+ la3V2>(V25,~j— )[r erf(ér)].

4 4 ar; dr;

J

(5)

Mi‘?)(kl,k%Z)ZJ f Mg%)(r)ei(klx*‘kz,\')dxdy’ (6)

where ¢ is the parameter for lattice sum. The lattice sum of
real space shown as the second term of the right-hand side in
Eq. (3) is solved by the same procedure as Beenakker [12].
The lattice sum of reciprocal space shown as the third term is
solved in the same way as Ichiki [13]. The numerical inte-
gration scheme is used for the calculation of a few terms in
the above mobility matrices.

In addition, the correction for the short-range interaction
is applied to the mobility matrix in the same way as Durlof-
sky er al. [14]. Rewriting Eq. (3), we obtain the vector form
of mobility equation for all particles as follows:

U=M,F, (7)

where U and F indicate the velocity and the force acting on
all particles, respectively. Instead of the grand mobility ma-
trix M in Eq. (7), the following matrix M; is used:

Mg =[Mg +Ry5— (M) ' T, (8)

where R,y is the resistance matrix of pair particles and M,p
is the pair mobility matrix given by Eq. (2). The resistance
matrix R,z was solved exactly by Jeffrey and Onishi [15]
and their solution is used here. The instantaneous position of
particles is calculated by numerical integration of Eq. (7),
replacing M to M.
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FIG. 2. Drag force acting on a dilute particle layer for (a) SC array, (b) BCC array, and (c) FCC array [C indicates the coefficient in

Eq. 9)].

III. RESULTS AND DISCUSSION
A. Drag force exerted on regular particle layer

We have investigated the diffusive behavior caused by the
hydrodynamic interaction between particles consisting of a
thin layer. We have considered the spreading of the layer
resulting from the variance of the drag force on particles in
it. It might be expected that the drag exerted on each particle
in the layer depends on their relative position, i.e., the drag
exerted on particles at the end of the layer differs from that in
the center. For the fundamental understanding of these ef-
fects, we begin with a discussion about the drag force ex-
erted on particles in a spatially fixed layer. We examined
three kinds of arrays with regular arrangement, namely,
simple cubic (SC), body-centered cubic (BCC), and face-
centered cubic (FCC). The drag coefficients of these arrays
in an infinite system (the particle exists endlessly in space)
[16-18] and in a semi-infinite system (the end of particle
layer exists only in one direction) [19,20] have already been
reported.

We first validated our analysis method by comparing it to
other previous studies with regard to the drag force exerted
on dilute particle arrays. Figure 2 shows the results of the
drag coefficient calculation in fixed regular particle layers
with finite thickness. In the figure, N indicates the particle
number in the layer, and C is the modified coefficient of the
Stokes drag, which is defined by following equation:

F=67ualU(1 + Calh), 9)

where F is the drag force, U is the relative velocity of fluid to
particle, and %/a is the ratio of unit length of particle sepa-
ration to particle radius. The definitions of & are shown in the
inset of each figure. For all conditions, we set h/a=1000,
which corresponds to extremely dilute concentration. The to-
tal number of particle arrays N; was set to be 15. N=1 and
N=N, indicate the particles existing on both ends of the
layer. Figure 2 also shows the results for the infinite system

by Hasimoto [16] and those for the semi-infinite system by
Ishii [19], which are O(a/h) solution.

As can be seen in Fig. 2, the profile of drag on particles in
the layer is symmetrical because of the linearity of the
Stokes equation. The drag coefficients of the central particles
in the layer agree well with that of the infinite system by
Hasimoto. On the other hand, the drag on particles near the
layer end is different from that on the central particles. They
agree quantitatively with those in the semi-infinite system by
Ishii.

The profile of the drag coefficient near the layer end var-
ies with the internal arrangement. For SC array, the drag
coefficient at the end is larger than that in the center, while it
is smaller for BCC and FCC. Such interesting features of
drag force have already been reported by Ishii. These results
indicate that the drag on particles near the end is influenced
by the internal arrangement of the layer. In consequence, if
these particles were not fixed, their relative motion would
vary according to the internal arrangement.

The difference of the drag force at the end of layer is also
found in dense system. Figure 3 shows the drag coefficient
K=F/6muaU of the fixed regular particle layers on dense
conditions. We set the number of arrays N;=11 for all ar-
rangements. The figure also indicates the drag coefficient
near the end of semi-infinite particle array by Sangani and
Behl [20]. The drag coefficient shows similar profiles to the
dilute conditions, i.e., the drag on the end of the layer is
larger than that on the central particles for SC, while it is
smaller for BCC and FCC. It is also found from Fig. 3 that
the difference of the drag decays within the close proximity
to the end of the layer even in dense system as well as in
dilute system.

Here we show the results only for the concentration ¢
< (0.2 since we considered only the low-order moments of
multipole expansion. In consequence, our analysis could not
be applied to the denser system. Sangani et al. also calcu-
lated the drag on semi-infinite arrays for dense packing limit.
According to their results, the difference of the drag near the
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FIG. 3. Drag force acting on a dense particle layer for (a) SC array, (b) BCC array, and (c) FCC array (drag coefficient K=F/6mual).

end of particle layers decays only for a few rows and the
drag coefficient is almost constant inside the layer even for
the packing limit. It is found from Fig. 3 that our results
show excellent agreement with the solutions by Sangani et
al. for SC and BCC, while it is slightly different for FCC
array because of the larger ¢.

Based on the results shown in Figs. 2 and 3, the dynamic
behavior of particles in the layer can be inferred as follows.
If the arrangement of the particle in the layer is held in some
degree, for SC array, the particle near the front end is close to
the central particles and the rear particle comes off because
the drag force on both particles is larger than that on the
centers. On the contrary, the front particle goes away from
the central particles and the rear particle is close to them for
BCC and FCC arrays. The detailed dynamics of these par-
ticle layers are described in the next section.

Figures 4 and 5 show the drag coefficient K at the center
of the finite layer in various concentrations. The total number
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3.0 i
F [
O Zick and Homsy (SC) |
L v (BCC) |
2.0 o (FCC)
[ B Present (SC) ]
v (BCC)
° (FCC)
1.0 wwwwwwwwwwwwwwwwww Lo b 5
0.00 0.05 0.10 0.15
(4

FIG. 4. Drag coefficient K at the center of layer with that in
infinite system by Zick and Homsy [18] and analytical solution for
dilute regular packing by Saffman [17].

of arrays N; is 15, which is the same as that shown in Fig. 2.
We adjusted the particle concentration ¢ by changing in the
unit length of the separation /i/a. It is found that the drag on
the center particle increases with increasing ¢. This corre-
sponds to the increase in the permeation resistance of the
denser particulate system. Figures also show the numerical
results for the infinite packing by Zick and Homsy [18] and
the analytical expression by Saffman [17] for the dilute infi-
nite system given by
1

where 8=1.74 for SC array. The drag coefficient on the cen-
ter particle in the finite layer is in quantitative agreement
with that in the infinite array for ¢<<0.2. For denser condi-
tion, the drag coefficient at the center of the finite layer is

(10)

(4
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FIG. 5. Drag coefficient K at the center of layer with that in
infinite system by Zick and Homsy [18] and drag coefficient calcu-
lated by Kozeny-Carman relation K=10¢/(1-¢)>.

066311-4



DIFFUSIVE BEHAVIOR OF A THIN PARTICLE LAYER...

(a)

FIG. 6. Relative motion of particle layer to fluid for (a) BCC
array (Ly/a=40, ¢,=0.055) and (b) its reverse motion.

close to the drag coefficient of a particle calculated by
Kozeny-Carman permeation resistance K=10¢/(1-¢)>.

In this section, we have discussed the drag force exerted
on particles in a spatially fixed layer. We can summarize
findings from the results as follows: (1) the drag on central
particles in the layer is almost the same as that in the infinite
system; (2) the drag at the end of the layer differs from the
center and it depends on particle arrangement inside the
layer; (3) the drag difference is confined to the immediate
vicinity to the end. On the basis of these results, we take a
discussion one step further to the dynamic behavior of par-
ticles in the next section.

B. Dynamic behavior of regular particle layer

In the above section, the drag force exerted on fixed par-
ticle layers have been discussed. However, in reality, the
relative position of particles may change due to the differ-
ence of the drag force on each particle and, consequently, the
regularity of the arrangement of particles will be broken. We
discuss the dynamic behavior of the regular particle layer,
which moves freely in this section.

Figure 6(a) shows the relative motion of BCC layer to
fluid for initial thickness L,/a=40 and initial concentration
¢p=0.055. We obtained these results by solving Eq. (7) with
Eq. (8) and then integrating the velocity of all particles nu-
merically. At an early stage, the rear particle approaches to
the central particles, while the front particle goes away due
to the difference of the drag force. It is consistent with the
inference in the above section. However, the end effect is
transmitted to the center with time and the relative position
of particle becomes complicated. Even though seemingly
complex at a glance, the motion of each particle has some
rules. Figure 6(b) indicates the results of the reverse motion
of BCC layer. To obtain this, we used the final position of
particles shown in Fig. 6(a) as an initial condition and ap-
plied the external force in the opposite direction. As can be
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FIG. 7. Relative position of particles in regular arrangement
layer for initial thickness Ly/a=40 and initial concentration (a)
$p=0.065 (SC), (b) ¢y=0.055 (BCC), and (c) ¢y=0.057 (FCC).

seen, the broken regular arrangement is completely restored
to its former state. Such a reversible behavior is due to the
kinematic reversibility of the Stokes equation [21,22].

Figure 7 indicates the positions of particles in SC, BCC,
and FCC layers observed in the coordinates moving with the
rear particle at the same time intervals. The initial layer
thickness is Ly/a=40 and the initial concentration is set to be
¢o~0.06 in all layers by adjusting the unit length of sepa-
ration /4. As inferred in the above section, the front particle is
initially close to the central particles and the rear particle
comes off for SC layer and vice versa for BCC and FCC.
However, the relative position of particles becomes compli-
cated as time passes. Because of the complicated behavior of
particles, it is difficult to describe how the concentration pro-
file changes. Suffice it to say that BCC layer looks dilute at
the front and dense at the rear.

It is also found in Fig. 7 that even though the initial thick-
ness and concentration of all layers are similar, the spreading
behavior is considerably different from each other. While SC
layer does not change its thickness definitely, BCC layer
changes the thickness almost 1.5 times as large as the initial
one for the same period. These results suggest that the par-
ticle arrangement inside the layer greatly affects the overall
diffusive motion.

From these results, the motion of the particle layer with
the regular arrangement can be explained as follows. If the
particle layer has a finite thickness, the drag force exerted on
the particle near layer ends is different from the center, and it
depends on the particle arrangement inside the layer. If the
relative position of particles is fixed, this end effect is re-
stricted to the particle near the ends. However, in case of the
dynamic system, the end effect is transmitted into the center
of the layer and it greatly changes the inside arrangement.
Consequently, the spreading behavior of the layer varies with
the inside arrangement even if the initial concentration is
similar. These results imply that the hydrodynamic diffusion
caused by the end effect depends not only on the concentra-
tion but on the inside arrangement of particles. This is a
remarkable different point from molecular diffusion, which
depends only on the gradient of the concentration.

In actual system, the particles could not keep their regu-
larity as shown in Fig. 7 for a long time, because of the
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FIG. 8. Relative motion of random particle layer to fluid for
initial thickness Ly/a=40 and ¢,=0.060.

clumping instability (the hydrodynamic instability of par-
ticles with regular arrangement) [23,24] or the gravity-
induced instability (the instability which occurs at
suspension-liquid interfaces by gravity) [25,26]. Therefore, it
must be said that the results shown in this section are some-
what idealistic. They are rather important for discussions of
the hydrodynamic effect on random particle layers, which
are given in the next section.

C. Motion of random particle layer

The relative motion of particle layers with random ar-
rangements to fluid has been also examined. Figure 8 indi-
cates an example of the motion of a random particle layer
obtained numerically. In the figure, the behaviors of particles
for three lattices of Ewald sum (n;,=—1,0, 1) are shown. The
initial layer thickness and initial concentration are similar to
the results for regular particle layers shown in Fig. 7, and are
Ly/a=40 and ¢,=0.060, respectively. It would appear that
the profile of the concentration in the layer becomes dilute at
the front and dense at the rear, which is similar to BCC layer
shown in Fig. 7.

In order to understand the spreading behavior of layers
more quantitatively, we calculated the motion of 13 kinds of
random particle layers with different arrangements. Figures 9
and 10 indicate the changes in the layer thickness and the
concentration of random layers with their movement dis-
tance, respectively. These figures also show the results for
regular particle layers. As for regular layers, the thicknesses
of BCC, FCC, and SC layers become larger in that order. In
response to changing the thickness, the overall concentration
inside the layer becomes smaller. It is found from Fig. 9 that
the random particle layer changes its thickness similarly to
BCC layer. Ishii [ 19] studied the drag difference at the end of
semi-infinite particle arrays and reported that its dependency
on the inside arrangement is caused by the variance of flow
pattern through the layer, which is determined by the posi-
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FIG. 9. Layer thickness of random particle layer with those of
periodic layer.

tional relation of particles in the direction of movement. The
results shown here suggest that the positional relation of par-
ticles in random layer and BCC layer are alike hydrodynami-
cally, and, consequently, the random layer diffuses in the
similar way to BCC layer.

Figure 11 shows the relationship between the instanta-
neous concentration and the average velocity of particles in
13 kinds of random particle layers during their relative mo-
tion to fluid. The small dots represent our results. It is found
that the average velocity of particles in all layers changes in
a similar fashion, i.e., the spreading of layers reduces the
concentration and, consequently, the average velocity in-
creases in some degree (the plots move from right to left
with passing time). For comparison, the velocity of regular
infinite array U/Uy,=K~' (Uy=F/6mua: Stokes velocity)
given by Eq. (10), and the following theoretical expression
for random infinite array on dilute condition [27] are also
indicated in the figure:

v, 6.55¢ (11)
g, = 16550

If the particles in the layer are perfectly at random and the
end effect is minor, it might be expected that the average
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FIG. 10. Particle concentration in random particle layer with
those in periodic layer.
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FIG. 11. Average velocity of random particle layer (+: numeri-
cal results of infinite system by Phillips et al. [28]).

velocity is similar to Eq. (11), which is the expression for
random infinite system. However, our results lie between the
results by Eq. (11) and the results of regular array given by
Eq. (10). One of the possible reason is that the system treated
here is the “periodically random” system, in which random
nature of the particle arrangement is not fully realized owing
to the long-range hydrodynamic interaction between par-
ticles in Stokes flow. Phillips er al. [28] reported the analo-
gous effect in an infinite random system. As shown in Fig.

PHYSICAL REVIEW E 80, 066311 (2009)

11, their calculation results on the velocity of an infinite par-
ticle system are close to our results of a finite system. There-
fore, it remains possible that our system is not fully random.
However, it might be expected that the diffusive behavior of
the particle layer, as discussed above is less affected by the
periodic randomness, because the positional relation of adja-
cent particles is a major influence on it.

IV. CONCLUSIONS

The diffusive behavior of a thin particle layer caused by
the hydrodynamic interaction was examined theoretically
and numerically. Regarding regularly arranged particle lay-
ers, we showed the difference of the drag force between
particles near the end and the center of the layer and its
dependency on the particle arrangement inside the layer. Ow-
ing to such a drag difference, the dynamic behavior of the
particle layer also varies with the inside arrangement even if
the concentration is similar. Moreover, we discussed the hy-
drodynamic effect on particle layers with random arrange-
ment. In case of random particle layers, the spreading motion
is similar to that of BCC layer. It would appear that the
positioning relation of particles in random layer and that in
BCC layer are hydrodynamically alike and, consequently, the
similar effect is exerted on both layers.
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